
© Copyright Ian D. Romanick 2009

21-July-2009

VGP353 – Week 2

⇨ Agenda:
­ Assignment #1 due
­ Introduce shadow maps

­ Differences / similarities with shadow textures
­ Added benefits
­ Potential problems

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Textures

⇨ As discussed last week, shadow textures have a
number of faults

­ Separate texture for each caster / light pair
­ No self-shadowing
­ Difficulty with casters / receivers that a nearly the

same distance from the light

⇨ What is the fundamental limitation at the root of
all these problems?

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Textures

⇨ As discussed last week, shadow textures have a
number of faults

­ Separate texture for each caster / light pair
­ No self-shadowing
­ Difficulty with casters / receivers that a nearly the

same distance from the light

⇨ What is the fundamental limitation at the root of
all these problems?

­ Each shadow texel is a simple on-or-off. The
remaining information must be inferred.

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Textures

⇨ To determine whether a position in 3-space is in
shadow, what information is needed?

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Textures

⇨ To determine whether a position in 3-space is in
shadow, what information is needed?

­ Is there something closer to the light in the direct line-
of-sight

­ The shadow texture only tells whether there is something in
the line of sight, not whether that something is closer to the
light

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Instead of storing boolean “shadow” / “not
shadow”, store the distance from the light to the
closest shadow caster

­ This is a shadow map
­ Compare the distance read from the shadow map to

the distance between the object and the light
­ If distance

shadow
 < distance

object
, the fragment is in shadow

­ If distance
shadow

 ≥ distance
object

, the fragment is not in shadow

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Shadow map stores “distance to nearest shadow
caster.”

­ Remind you of anything?

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Shadow map stores “distance to nearest shadow
caster.”

­ Remind you of anything?
­ A depth buffer!

­ Depth buffer (typically) stores the per-pixel distance to the
object nearest to the eye

­ When rendering from the light's PoV, the distance stored in
the depth buffer is the distance to the object nearest to the
light

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Textures vs. Shadow Maps

⇨ Shadow texture:
­ Draw either light color

or shadow color to a
color texture

­ Read light color directly
from shadow texture

­ Color fragment based
on light color

⇨ Shadow map:
­ Draw distance to

nearest object to a
depth texture

­ Compare occluder
distance to object
distance

­ Color fragment base on
result of comparison

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Advantages:

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Advantages:
­ Objects can self-shadow!
­ Near-by objects can shadow each other correctly

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Advantages:
­ Objects can self-shadow!
­ Near-by objects can shadow each other correctly

⇨ Disadvantages:

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Advantages:
­ Objects can self-shadow!
­ Near-by objects can shadow each other correctly

⇨ Disadvantages:
­ Separate texture for each caster / light pair

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps

⇨ Advantages:
­ Objects can self-shadow!
­ Near-by objects can shadow each other correctly

⇨ Disadvantages:
­ Separate texture for each caster / light pair

­ Is this necessary? NO!

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps Revised

⇨ Algorithm:
­ Group potential casters and receivers
­ Calculate frustum that encompasses all objects within

a group
­ Render objects using calculate frustum. Store depth

buffer in a texture (shadow map)
­ Render objects from the camera's PoV with

appropriate shadow map. Use comparison previously
described.

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Map Problems

⇨ Four big problems with shadow maps:
­ Sampling differences between shadow map rendering

and reading...the dreaded “shadow acne”
­ Aliasing
­ Lack of depth precision
­ Omni-directional lights inside the view frustum

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Acne

⇨ Light and camera sample
object at different positions

­ Drawing from the light's PoV
samples one set of positions

Light

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Acne

⇨ Light and camera sample
object at different positions

­ Drawing from the light's PoV
samples one set of positions

­ Drawing from the camera's
PoV samples a different set
of positions

Eye

Light

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Acne

⇨ Light and camera sample
object at different positions

­ Drawing from the light's PoV
samples one set of positions

­ Drawing from the camera's
PoV samples a different set
of positions

­ Result: incorrect values are
used to determine if a
surface shadows itself

Eye

Light

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Acne

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Acne

⇨ Two common solutions:

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Acne

⇨ Two common solutions:
­ Render back faces to shadow map

­ Front faces aren't drawn to shadow map, so they won't self-
shadow

­ Back faces aren't lit: depth comparison result is irrelevant

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Acne

⇨ Two common solutions:
­ Render back faces to shadow map

­ Front faces aren't drawn to shadow map, so they won't self-
shadow

­ Back faces aren't lit: depth comparison result is irrelevant

­ Use polygon offset
­ Bias fragment depth by small factor to ensure distance

shadow
 ≥

distance
object

glPolygonOffset(1.1f, 1.0f);

­ Very tricky to get right! Movie fx companies spend lots of
time tweaking every frame to eliminate artifacts1

1 G. King, “Shadow Mapping Algorithms.” NVIDIA. 2004.
 ftp://download.nvidia.com/developer/presentations/2004/GPU_Jackpot/Shadow_Mapping.pdf

ftp://download.nvidia.com/developer/presentations/2004/GPU_Jackpot/Shadow_Mapping.pdf

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Map Aliasing

⇨ Several sources of aliasing in shadow maps
­ Must use nearest-neighbor sampling

­ Straightforward bi-linear or mipmap sampling would average
depth values together for use in comparison

­ Depth maps are typically small, so fine details may
get lost

­ Shadows from thin objects (telephone wires, chain link fence,
etc.) may disappear

­ Small gaps between objects may fill-in

­ Objects distant from light may be too small in shadow
map

­ If the object's shadow is near the camera, it will appear very
blocky

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Map Precision

⇨ Every Z-buffer has potential precision problems
­ Objects distant from

near-plane get fewer
significant bits to store
depth

­ May not be noticeable far
from the near plane

­ Due to viewing
differences, lack of Z
precision far from light's
near-plane may result
in artifacts close to
camera's near-plane

Image from http://en.wikipedia.org/wiki/Z-fighting

http://en.wikipedia.org/wiki/Z-fighting

© Copyright Ian D. Romanick 2009

21-July-2009

Omni-directional Lights

⇨ Consider this scene...
­ What frustum do we pick for

the light and the large object?
­ We'd need a 360˚ field-of-

view!

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps in GLSL

⇨ New sampler types:
­ sampler1DShadow and sampler2DShadow

⇨ New sampler functions:
­ shadow1D and shadow1DProj
­ shadow2D and shadow2DProj

­ 3rd component of texture coordinate is the distance used for
comparison

­ As with projective textures, use shadow sampler types
and functions instead of doing comparisons by hand

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Maps in GLSL

⇨ Each texture has a depth comparison mode
­ Mode is set by calling glTexParameteri with name

of GL_TEXTURE_COMPARE_FUNC
­ Sets mode used for comparison in sampler[12]D

functions

⇨ Sampler function returns 1.0 if the test passes or
0.0 if the test fails

© Copyright Ian D. Romanick 2009

21-July-2009

Depth Textures

⇨ Store single component, normalized value used
for depth (shadow) comparisons

­ Use one of three internal formats:
­ GL_DEPTH_COMPONENT16

­ GL_DEPTH_COMPONENT24

­ GL_DEPTH_COMPONENT32

­ Only format that can be used with GLSL shadow
samplers

­ Can be also use with non-shadow samplers as a luminance,
intensity, or alpha texture

© Copyright Ian D. Romanick 2009

21-July-2009

Depth Textures

⇨ Create just like any other texture:
glBindTexture(GL_TEXTURE_2D, my_shadow_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24,
 0, 0, width, height, GL_DEPTH_COMPONENT24,
 GL_UNSIGNED_INT, NULL);

© Copyright Ian D. Romanick 2009

21-July-2009

Depth Textures

⇨ Create just like any other texture:
glBindTexture(GL_TEXTURE_2D, my_shadow_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24,
 0, 0, width, height, GL_DEPTH_COMPONENT24,
 GL_UNSIGNED_INT, NULL);

⇨ To use as false-color texture:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,
 GL_NONE);
glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE,
 GL_INTENSITY);

­ Or GL_LUMINANCE or GL_ALPHA

© Copyright Ian D. Romanick 2009

21-July-2009

Depth Textures

⇨ Create just like any other texture:
glBindTexture(GL_TEXTURE_2D, my_shadow_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24,
 0, 0, width, height, GL_DEPTH_COMPONENT24,
 GL_UNSIGNED_INT, NULL);

⇨ To use as false-color texture:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,
 GL_NONE);
glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE,
 GL_INTENSITY);

­ Or GL_LUMINANCE or GL_ALPHA

⇨ To use as a shadow map:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,
 GL_COMPARE_R_TO_TEXTURE);

© Copyright Ian D. Romanick 2009

21-July-2009

Depth Textures

⇨ Set comparison function similarly:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC,
 GL_LESS);

­ In OpenGL 1.4 only GL_LEQUAL and GL_GEQUAL
were available

­ In OpenGL 1.5 and later all of the comparison
functions are available

© Copyright Ian D. Romanick 2009

21-July-2009

Depth Textures and FBOs

⇨ Attach the depth-component texture to the depth
attachment:
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
 GL_DEPTH_ATTACHMENT_EXT,
 GL_TEXTURE_2D, tex, 0);

­ If there are no mipmaps (likely), as usual, be sure to
set non-mipmap minification mode

­ If there is no color output (likely), be sure to disable all
color buffer access:
glDrawBuffer(GL_NONE);
glReadBuffer(GL_NONE);

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Map Texture Filtering

⇨ Shadow test samples shadow map once per
fragment

­ Results in two possible light levels: fully lit or fully
shadowed

Perform
shadow

test

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Map Texture Filtering

⇨ Percentage closer filtering (PCF) reads multiple
samples, performs one test per sample,
averages test results

­ Results in n+1 possible light levels, where n is the
number of samples

Perform
multiple

shadow tests,
average test

results

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Map Texture Filtering

⇨ Straight forward implementation in GLSL:
uniform vec2 bias;
uniform sampler2DShadow map;

void main()
{
 vec3 proj = coord.xyz / coord.w;
 vec3 p0 = proj – vec3((0.5 * bias.xy), 0.0);

 vec4 shadow = shadow2D(map, p0);
 shadow += shadow2D(map, p0 + vec3(bias.x, 0.0, 0.0));
 shadow += shadow2D(map, p0 + vec3(0.0, bias.y, 0.0));
 shadow += shadow2D(map, p0 + vec3(bias.x, bias.y, 0.0));

 shadow /= 4.0;

 ...
}

© Copyright Ian D. Romanick 2009

21-July-2009

Percentage Closer Filtering

⇨ The good news:
­ Improves quality
­ Larger filter kernels can be used to enable soft

shadows
­ Some hardware can do 2x2 PCF nearly for free

­ Just enable GL_LINEAR filter on Nvidia hardware

© Copyright Ian D. Romanick 2009

21-July-2009

Percentage Closer Filtering

⇨ The good news:
­ Improves quality
­ Larger filter kernels can be used to enable soft

shadows
­ Some hardware can do 2x2 PCF nearly for free

­ Just enable GL_LINEAR filter on Nvidia hardware

⇨ The bad news:
­ Larger filter kernels are expensive
­ Grid-based sampling has artifacts

© Copyright Ian D. Romanick 2009

21-July-2009

Grid-Based Sampling

⇨ Grid-based sampling artifacts have regular
shape and are easily noticed by the eye

Images from http://ati.amd.com/developer/SIGGRAPH05/ShadingCourse_ATI.pdf

http://ati.amd.com/developer/SIGGRAPH05/ShadingCourse_ATI.pdf

© Copyright Ian D. Romanick 2009

21-July-2009

Grid-Based Sampling

⇨ Grid-based sampling artifacts have regular
shape and are easily noticed by the eye

⇨ Irregular sample patterns are more easily
accepted by the eye

­ Can even use fewer samples in the same size area

Images from http://ati.amd.com/developer/SIGGRAPH05/ShadingCourse_ATI.pdf

http://ati.amd.com/developer/SIGGRAPH05/ShadingCourse_ATI.pdf

© Copyright Ian D. Romanick 2009

21-July-2009

Irregular Sampling

⇨ Select filter area

© Copyright Ian D. Romanick 2009

21-July-2009

Irregular Sampling

⇨ Select filter area

⇨ Select random sample locations
within area

© Copyright Ian D. Romanick 2009

21-July-2009

Irregular Sampling

⇨ Select filter area

⇨ Select random sample locations
within area

⇨ Randomly rotate sample locations
­ Rotation based on screen location

© Copyright Ian D. Romanick 2009

21-July-2009

Filter Cost

⇨ 12 or 16 samples per fragment is expensive

© Copyright Ian D. Romanick 2009

21-July-2009

Filter Cost

⇨ 12 or 16 samples per fragment is expensive
­ In most of the final image, expensive sampling is

unnecessary
­ Nyquist–Shannon sampling theorem tells us that

areas with only low-frequency information need fewer
samples than areas with high-frequency information

© Copyright Ian D. Romanick 2009

21-July-2009

Filter Cost

⇨ 12 or 16 samples per fragment is expensive
­ In most of the final image, expensive sampling is

unnecessary
­ Nyquist–Shannon sampling theorem tells us that

areas with only low-frequency information need fewer
samples than areas with high-frequency information

­ The only high-frequency information is near the shadow
boundaries!

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Boundary Map

⇨ Find boundaries in shadow map
using edge detection filter

­ The edges in the map are the regions
where the expensive filter should be
applied

⇨ Blur edge map using a blur kernel
equal in size to the shadow map
sample filter

­ This increases the area where the
expensive filter will be applied and
ensures that it will be applied
everywhere that it needs to be

© Copyright Ian D. Romanick 2009

21-July-2009

Shadow Boundary Map

⇨ Use the shadow boundary map to determine
whether to use one or many shadow samples
if (texture2DProj(boundary_map, proj) > 0.0) {
 shadow = pcf_shadow_filter(shadow_map, proj);
} else {
 shadow = shadow2DProj(shadow_map, proj)
}

­ On hardware that support dynamic flow control, this
can be a big win

­ DFC is a required part of DX 9.0c Shader Model 3.0
­ Geforce6 and later
­ Radeon X1xxx (R500) and later
­ Intel GMA X3000 (G965) and later

© Copyright Ian D. Romanick 2009

21-July-2009

References

Sander, P. and Isidoro, J. Explicit Early-Z Culling and Dynamic Flow
Control on Graphics Hardware. ATI Corporation, 2005, accessed 20
April 2008; available from http://ati.amd.com/developer/techpapers.html

http://ati.amd.com/developer/techpapers.html

© Copyright Ian D. Romanick 2009

21-July-2009

Next week...

⇨ Advanced shadow map techniques
­ Quiz #1
­ Assignment #2... due next week
­ Read:

W. Reeves, D. Salesin, and R. Cook, "Rendering Antialiased Shadows with
Depth Maps." In Proceedings of SIGGRAPH ’87. 1987.
http://graphics.pixar.com/ShadowMaps/

R. Fernando, "Percentage-Closer Soft Shadows." In Proceedings of
SIGGRAPH 2005. 2005.
http://developer.nvidia.com/object/siggraph_2005_presentations.html

­ Reducing shadow map aliasing
­ Percentage closer soft shadows (PCSS)
­ Depth range optimizations

© Copyright Ian D. Romanick 2009

21-July-2009

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

